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Time correlation function and its unifying role in molecular structure
and dynamics

S. MAHAPATRA‹ , N. CHAKRABARTI Œ and N. SATHYAMURTHY � s

Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India

The utility of time correlation functions computed by time evolving suitably
chosen wave packets to studies of bound states of molecules, quasibound states and
transition state resonances in reactive systems, photoabsorption± dissociation and
resonance Raman scattering in molecules is illustrated using examples from our
own laboratory. The role of excited electronic states and wavefunction interference
eŒects in in¯ uencing photoexcitation observables is examined using model
systems.

1. Introduction

The concept of the time correlation function is amazingly simple but highly

powerful. It is used in classical mechanics and also in quantum mechanics. It can be

used for an isolated system as well as a system under external in¯ uence. It can be used

for a variety of observables. Although the early use of time correlation functions in

spectroscopy could be traced back to the 1940s [1, 2] and the utility of time correlation

functionshas been well documented in the literature in the 1960s [3], much of the credit

for the resurgence in activity in the area should perhaps go to Heller [4, 5]. From a

practical point of view, developments in computationalhardware (speed and memory)

and in the practice of time-dependent quantum-mechanical (TDQM) methodology

[6± 11] and experiments in probing ultrafast phenomena [12, 13] have been responsible

for the mushroom growth in the literature on time correlation functions in recent

years.

In this review, we concern ourselves with the wavefunction time correlation

function and its application to a study of molecular structure and dynamics in

elementary chemical systems. The correlation function could be an autocorrelation

function or a cross-correlation function. The autocorrelation function C(t) is de® ned

as the scalar product of the wavefunction W at any time t with its initial (t = 0) value :

C(t) = © W (0) r W (t) ª . (1)

C(t) is invariably complex but r C(t) r # is always real and positive and is referred to as

the survival probability P(t). The Fourier transform of C(t) takes it to the frequency

domain [14]. For an isolated system evolving in time on a single potential energy

surface, for example, the Fourier transform of C(t) yields the eigenvalue spectrum:

I(E) = ) & ¢

- ¢

exp 0 iEt

ò 1 C(t) dt ) # . (2)
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236 S. Mahapatra et al.

If the initial wavefunction represented a pure state, then C(t) would be a periodic

function of t, and I(E ) would be a d function centred at the eigenvalue of the state.

However, if W (0) represented a superposition of states, it can be shown readily that the

power spectrum (2) would consist of spectral lines of varying intensity, corresponding

to diŒerent eigenstates E
n

of various weightages. The eigenfunctions W (E
n
) of the non-

degenerate eigenstates would be obtained by projecting the components out of the

time-evolved wavefunction:

W (En ) = & + ¢

- ¢
W (t) exp 0 iEn

t

ò 1 dt. (3)

In practice, the integrals in equations (2) and (3) cannot be carried over time varying

from –¢ to 1 ¢ , but over a ® nite interval from 0 to T. In order to correct for this

® nite range of t, it is common to include a window function w(t) } T [15], such that

I(E ) = ) 1T &
T

!

C(t)w(t) exp 0 iEt

ò 1 dt) # (4)

and

W (En ) =
1

T &
T

!

W (t)w(t) exp 0 iEn
t

ò 1 dt. (5)

It is common to use a Hanning window function [16]:

w(t) =

1

2
3

4

1 –cos 0 2 p t

T 1 if 0 % t % T,

0 if t " T,

(6)

although other alternatives exist [17, 18].

For a bound state problem, thus, one can compute the eigenfunctions and

eigenvalues by computing the autocorrelation function for a single wave packet (WP)

evolving in time. Depending upon the choice of W (0), some of the eigenstates may be

missed out, but they can be resolved from C(t) obtained for a diŒerent choice of W (0).

For collisional systems involving no bound states but possibly quasibound states,

which would be manifested as resonances in the plots of the reaction probability PR

against the energy, the autocorrelation function can be used to compute the

eigenvalues corresponding to the quasibound states and hence to predict resonances.

The nature of the resonances and their lifetimes could be discerned by computing the

eigenfunctions and the spectral line shapes respectively.

The pioneering work of Heller and co-workers [4, 5, 19± 22] in the late 1970s and

early 1980s opened up an exciting area of research called WP spectroscopy. Their

approach utilizes time correlation function as the central quantity in real-time

investigation of dynamical events occurring on a femtosecond time scale. Interaction

of light with a single gas molecule comes under the study of photon-driven dynamics

[23± 27]. In investigations of the dynamical processes initiated by photon(s), the

dynamics involve more than one electronic state. For a two-state system, for example,

the absorption spectrum can be computed from the autocorrelation function [23]. For

a system in the vibrational state r iª of the ground electronic state, let the nuclear

wavefunction at time t = 0 be represented by W
i
(0). On optical excitation, the
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Time correlation and unifying role in molecular structure and dynamics 237

wavefunction U
i
(0) (referred to as the promoted-stat e wavefunction) on the excited

state would become [28]

U
i
(0) = l [ EW

i
(0), (7)

where l is the transition dipole vector and E represents the electric ® eld of the photon.

The time evolution of the wavefunction would now be governed by the excited-state

Hamiltonian H
ex

, and U
i
(t) would be obtained from

U
i
(t) = exp 0 –

iH
ex

t

ò 1 U
i
(0). (8)

The autocorrelation function C
ii
(t) for the system would then be

C
ii
(t) = © U

i
(0) r U

i
(t) ª . (9)

The absorption spectrum would be computed from C
ii
(t) as [5, 19, 27]

r
A
( x ) =

2 p x

3 ò c &
+ ¢

- ¢

C
ii
(t) exp 0 iEt

ò 1 dt, (10)

where x is the frequency of the incident radiation and E = E
g

1 ò x , with E
g

the

internal energy of the molecule in its ground electronic state. If the excited state is a

dissociative state, the photoabsorption± dissociation cross-section would be structure-

less, except to mirror the nodal structure of the vibrational wavefunctionof the ground

electronic state. In the case when the excited state is also a bound state, the absorption

spectrum would consist of a set of lines corresponding to the eigenvalue spectrum of

the excited state.

The emission spectrum from an excited state of a system can be computed by

reversing the roles of the ground and excited states. For example, Mahapatra and

Ko$ ppel [29] have computed the optical emission spectra of Rydberg-excited H
$
and its

isotopomers from their third principal quantum shell to the degenerate ground

electronic manifold and compared with the experimental recording recently.

When the overlap between the time-evolved promoted-state wavefunction U
i
(t)

and the wavefunction ( U
f

= l [ EW
f
) corresponding to the vibrational state f of the

ground electronic state is computed, we obtain the cross-correlation function:

C
fi
(t) = © U

f
r U

i
(t) ª . (11)

This is often called the Raman correlation function. The half-Fourier transform of

C
fi
(t) yields the Raman amplitude

a
fi
( x ) =

i

ò &
¢

!

C
fi
(t) exp [i(x 1 x

i
)t] dt. (12)

The `observable ’ Raman scattering intensity I
fi
( x ) (also called the `Raman excitation

pro® le’ ) is proportional to the squared modulus of the Raman amplitude [5, 20] :

I
fi
( x ) £ x x $

s
r a

fi
( x ) r # , (13)

where x
s

is the frequency of the scattered radiation. If f = i = 0, then I
fi
( x ) is the

Rayleigh scattering intensity. When i = 0, f = 1, then I
fi
( x ) refers to the fundamental

(Stokes) Raman transition and, when i = 1, f = 0, it would correspond to the anti-

Stokes line. The overtones of the Stokes± Raman emission would correspond to i = 0,

f = 2, 3, ¼ , etc. For an extensive review of the literature on the utility of cross-
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238 S. Mahapatra et al.

correlation functions to resonance Raman investigations of a variety of systems, the

reader is referred to [30].

One of the advantages of the time correlation function is that it portrays the nature

of the dynamical system right away. For a bound state there would be characteristic

recurrences revealing the time period of the WP motion. In the case of a repulsive state,

C(t) would be a decaying function, the decay rate depending on the steepness of the

repulsive potential. In the case when the system supports a number of quasibound

states, there would be several oscillations in the plot of C(t), revealing several

frequency components. Interferences between wavefunctionsevolving on two or more

coupled electronic states will also be evident from C(t) plots.

The key to computing the time correlation function is to evolve the wavefunction

of a system for a desired length of time. The computational methodology for the same

has been dealt with in detail elsewhere [10]. In this review we focus attention only on

obtaining valuable insight into molecular structure and dynamics from the computed

C(t). By no means do we claim to cover the entire C(t) literature in this review. An

extensive list of references to its utility in photoexcitation processes can be found in

[10]. Because of space and time restrictions, we con® ne ourselves to a discussion of a

few topics that are directly related to the work done in our laboratory.

We highlight some of the applications to the bound-state problem in section 2, and

the quasibound states and transition-state resonances in section 3. An analysis of the

nature (regular or irregular) of the resulting spectra is presented in section 4. Using

model diatomic potentials, we illustrate the use of autocorrelation and cross-

correlation functions in the study of photoexcitation processes involving single

electronic excited states in section 5.1. Interference eŒects arising from multipleexcited

electronic states are discussed in section 5.2. The problem of recovery of cross-

correlation functions from the Raman excitation pro® les is highlighted in section 5.3.

That is followed by a summary and conclusion section 6.

2. Bound states

The basic methodology in computing the eigenvalues and eigenfunctionsof bound

states supported by potentials with one or more minima using time correlation

functions has already been outlined in the introduction. It can be carried out easily for

diatomic systems [31± 33]. Its utility for triatomic molecules was demonstrated long

ago [15]. More recently, we have obtained the bound states for collinear HeH+

#
[34] and

its isotopic variants [35], and also for a model Pt± NO system [36]. Very recently, we

have computed the bound states for three-dimensional HeH+

#
and HeHD+ [37]. Still,

it is not the method of choice for many systems, particularly if the system involves

more than three degrees of freedom, and } or there are degenerate states.

There are systems for which the C(t) route is particularly suited when it comes to

studying the bound states. A case in point is H+

$
for which experiments showed that

there were about 27000 well resolved transitions in a 220 cm- " region of the

photodissociation spectrum [38± 40]. It wouldbe di� cult to use any of the conventional

methods to arrive at the bound states of this system. Evaluation of C(t) for diŒerent

lengths of time enabled Garcia de Polavieja et al. [41] to compute the spectrum at

diŒerent levels of resolution. Short-time dynamics could reveal the gross features and

the regularity in the spectrum while the long-time dynamics revealed the additional

lines and the irregularity therein. In fact, the method has been used to characterize the

eigenfunctionscorresponding to motions of `horseshoe ’ and `elephant foot’ variety of

chaos in the intramolecular dynamics of H+

$
.
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Time correlation and unifying role in molecular structure and dynamics 239

Figure 1. (a) Variation in the magnitude of the time correlation function r C(t) r showing the
bound nature of collinear N

#
H+ . (b) Energy eigenvalue spectrum obtained by Fourier

transforming the above time correlation function. The peaks in the spectrum correspond
to the vibrational energy levels in collinear N

#
H+ .

Recently, Mahapatra et al. [42] have followed the time correlation function

approach to identify a large number of bound states for N
#
H+ in collinear as well as

three-dimensional geometries. The procedure involved is the following: choose a WP

with a certain average energy © E ª located initially (t = 0) in the interaction region,

follow its time evolution by solving numerically the time-dependent Schro$ dinger

equation on a grid in Jacobi coordinate space and compute the time correlation

function over the entire duration. The technical details of the calculation have been

given elsewhere [42]. The result r C(t) r for an initial WP with © E ª = 0.7128 eV for

collinear N
#
H+ is reproduced in ® gure 1(a). It can be seen that, except for an initial

decline due to the dephasing of the initial WP, r C(t) r is dominated by recurrences

persisting over the entire time scale. This is typical of r C(t) r for a bound system. The

recurrence pattern in ® gure 1(a) clearly indicates that it results from a large number of

states with various frequencies. The energy eigenvalue spectrum obtained by Fourier

transforming the above autocorrelation function is reproduced in ® gure 1(b), where
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240 S. Mahapatra et al.

the intensity is plotted on a logarithmic scale as a function of energy. The peak

positions in the spectrum correspond to the bound states of collinear N
#
H+ . The

energy resolution of the spectrum is 6.7 3 10- % eV corresponding to a total of 6.18 ps

evolution of the WP. Although the spectrum is well resolved at lower energies, the

peaks overlap at higher energies owing to a large increase in the energy level density.

By choosing higher-energy initial WPs and longer propagation times a large number

of these levels at higher energies has been resolved, although there are many

degenerate or near-degenerate levels which are not obtained by this route. In section

4 we shall show that the extent of complexity in such a spectrum can be estimated

quantitativelyby analysing the survival probability P(t) averaged over the initial state

and the Hamiltonian.

Mahapatra and Ko$ ppel [43] have recently computed the bound states of the upper

adiabatic sheet of the degenerate ground electronic manifold of H
$

using the C(t)

route. These bound states change over to resonances and decay with 3± 6 fs when the

non-adiabatic coupling is included. The existence of `horseshoe ’ states on the lower

adiabatic sheet at the perpendicular geometry of H
$

and their instability in three

dimensions has also been reported by these workers.

3. Quasibound states and transition-stat e resonances

Investigation of the plots of reaction probability as a function of energy for many

atom± diatom systems reveals a number of oscillations that can be characterized as

reactive scattering resonances. While some of them could be identi® ed as shape

resonances and some as threshold or barrier resonances, many of them are of

Feshbach (compound state) type, arising from bound states supported by vibrational

adiabatic potentials. Several of them cannot be classi® ed as any of the above and they

can be related to unstable periodic orbits in a classical-mechanical description and can

carry the signature of classical or quantum chaos. The autocorrelation function

approach is well suited to a study of such resonances and the quasibound states

associated with them. A suitably chosen WP in the interaction region (in the vicinity

of the transition state, for example) is time evolved until most of it leaves the

interaction region and C(t) is calculated for the entire time period. Fourier transform

of the latter yields a pseudospectrum, the peaks of which are centred at the eigenvalues

corresponding to the diŒerent quasibound states. The corresponding eigenfunctions

can be computed as described earlier and they provide valuable insight into the nature

of the transition state. The spectral line shapes are indicative of the nature of the

resonances and they can be inferred readily (see below).

The method has been applied to a study of transition state resonances in collinear

and three-dimensional H 1 H
#

[44, 45], D 1 H
#

[46], He 1 H+

#
[34, 37], He 1 HD+ (DH+ )

[35], H- 1 H
#

[47] and l 1 H
#
, D

#
[48] collisions in recent years. We illustrate the

methodology and the insight obtained using collinear (He, H+

#
) as a test case.

The initial wavefunction W (R, r, t = 0) was taken as an even-parity Gaussian wave

packet (GWP) in terms of HeÐ H and HÐ H bond distances rHe ± H and rH ± H

respectively :

W (R, r, t = 0) = N exp 0 –(r
He ± H

–r !
He ± H

) #

2 d #
–(r

H ± H
–r !

H ± H
) #

2 d # 1 , (14)

where N is the normalization constant, r !
He ± H

and r !
H ± H

specify the initial location of
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Time correlation and unifying role in molecular structure and dynamics 241

Figure 2. Probability density contours of the initial GWP with © E ª = 0.9924 eV and width
d = 0.25a

!
at the diŒerent times indicated, showing its evolution on a 256 3 256 potential

grid. The total probability densities of the WP retained on the grid at diŒerent times are
1.0, 1.0, 0.99, 0.99, 0.77 and 0.035 in (a), (b), (c), (d), (e) and ( f ) respectively. An optical
potential has been used to remove the part of the wavefunction that reaches the grid
edges.

the centre of the WP and d is the width parameter. R and r are the Jacobi coordinates

related to r
He ± H

and r
H ± H

through

r
He ± H

= dR –
r

H ± H

2
(15)

and

r
H ± H

= d - " r, (16)

where d is the scaling parameter given by the square root of the ratio of the reduced

mass of H+

#
to the three-body reduced mass l = [m

He
m

H
m

H
} (m

He
1 m

H
1 m

H
)]" / # .

The time evolution of the WP was followed on a 256 3 256 grid in (R, r) space with

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
5
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



242 S. Mahapatra et al.

Figure 3. The decay of the absolute value of the autocorrelation function for the GWP
depicted in ® gure 2. The portion of the curve for t = 1 ± 2 ps is magni® ed and shown in
the inset.

Figure 4. The eigenvalue spectrum corresponding to the bound states of collinear HeH+

#
,

computed from the autocorrelation function in ® gure 3.

the origin at (2.2, 0.4)a
!

and increments D R = D r = 0.05a
!

using the split operator

method [15] for successive time intervals D t of 0.1616 fs each, amounting to a total of

5.29 ps.

For a particular choice of initial GWP centred at (R! , r ! ) = (5.422, 2.793)a
!

with

© E ª = 0.9924 eV, the time evolution is shown in terms of probability density contours

superimposed on the potential energy contour diagram at diŒerent times in ® gure 2. It

is clear from the decay of r C(t) r reproduced in ® gure 3 that there are a large number of

recurrences and that, even after several picoseconds, there is a small part of

the wavefunction that lingers on in the interaction region, implying that some of the

quasibound states of collinear HeH+

#
have lifetimes greater than a few picoseconds.

It can be seen from the power spectra shown in ® gures 4 and 5 that there are two

bound states and a large number of quasibound states and hence resonances for the

system. By ® tting individual spectral lines of ® gure 5 to a Lorentzian we obtain

lifetimes of some of the quasibound states as much as approximately 1.9 ps.
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Time correlation and unifying role in molecular structure and dynamics 243

Figure 5. The eigenvalue spectrum corresponding to the quasibound states of collinear HeH+

#
,

computed from the autocorrelation function in ® gure 3.

Figure 6. Probability density contours superimposed on the potential grid for two resonance
wavefunctions. The eigenenergies are indicated. The closely lying resonant periodic orbit
at 2.3650 eV is superimposed on the corresponding resonance eigenfunction, to illustrate
the classical-quantal correspondence.
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244 S. Mahapatra et al.

An examination of the eigenfunctions corresponding to the diŒerent eigenvalues

reveals that at low energies they correspond to local modes and that at higher energies

they are hyperspherical in nature as illustrated in ® gures 6(a) and (b) respectively. The

latter ® gure includes the corresponding resonant periodic orbit at that energy. An

extensive analysis of the stable and unstable periodic orbits and their relationship to

the quasibound state eigenfunctions of collinear HeH+

#
has been given elsewhere [49].

4. Spectral analysis

Although the eigenfunctions of the quasibound states in ® gure 5 can be identi® ed

from their characteristic nodal pattern at low and moderate energies and can be

assigned in terms of quantum numbers, they exhibit complex nodal patterns that are

di� cult to assign at higher energies. The di� culty is connected with the increasing

level density at higher energies and strong coupling between various molecular modes

of motion. This brings out many interesting and speci® c features in the dynamics,

which are not observed in the low-energy regime. There can be no good quantum

numbers for the system when the diŒerent modes are coupled with each other. The

complexity in the energy spectrum is also re¯ ected in the recurrence pattern of r C(t) r .
However, a quantitative estimate of this complexity can be obtained from the survival

probability © © P(t) ª ª averaged over the initial states and the Hamiltonian of the

system. This quantity in conjunction with the analytical predictions of random matrix

theory (RMT) uniquely identi® es the irregularity in the system originating from the

mode coupling.

The ensemble-averaged survival probability © © P(t)ª ª can be computed by Fourier

transforming the spectral autocorrelation function G(x ) [50], followed by averaging

over the initial states and the Hamiltonian. Therefore, it can also be used to extract

information from an experimental recording. Furthermore, it is particularly suitable

for analysing spectra of poor resolution. In terms of the energy eigenvalues, the

survival probability © P(t)ª averaged over the initial states is given by [51]

© P(t) ª =
3

N 1 2 9 1 1
2

3N
3

n , m ;n " m

cos 0 2 p (È
n

–È
m

)
t

© D È ª 1 : , (17)

where © D È ª is the average energy spacing in the spectrum. In practice the raw energy

level spectrum is ® rst unfolded [52] with respect to a constant average energy level

spacing and the new set of scaled energy levels È
i

are calculated. This removes the

irrelevant secular variation in the level spacings (a decrease in the spacing with increase

in energy for a Morse oscillator, for example) from the spectrum keeping their

¯ uctuation variation unaŒected. To obtain © © P(t) ª ª the quantity in equation (17) is

furtheraveraged over n levels which are grouped into several segments, each containing

N levels (averaging over the Hamiltonian). In the case of a regular spectrum, © © P(t) ª ª
starts from an initial value of 1.0 and monotonically approaches the asymptotic value

of 3} (N 1 2). On the other hand, for an irregular spectrum, © © P(t) ª ª falls below its

asymptotic value at short times (t = 2 p ò } © D È ª ) and approaches the asymptotic limit

at later times. The dip below the asymptotic value at short times is termed the

`correlation hole ’ , which is a graphic evidence of the level repulsion in the case of an

irregular spectrum. The © © P(t) ª ª values obtained from the quasibound states of

collinear HeH+

#
are shown as a solid curve in ® gure 7 [53]. The dip in © © P(t)ª ª below

the asymptotic line clearly emphasizes the signature of the underlying irregularity

in the quasibound spectrum of HeH+

#
.
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Time correlation and unifying role in molecular structure and dynamics 245

Figure 7. Variation in the ensemble-averaged survival probability © © P(t)ª ª with time t (in
arbitrary units) for the quasibound states spectrum of collinear HeH+

#
, plotted as a solid

curve. © © P(t) ª ª values derived from the RMT for b = 0.6 are shown as a broken curve.

The extent of irregularity is estimated by comparing the © © P(t) ª ª values with those

predicted by the RMT. The latter are given by [54]

© © P(t)ª ª =
3

N 1 2
{1 1 "

$
D N n [d ( s ) –b

# b ( s )]}, (18)

where s = t} 2 p © q ª , with © q ª as the average level density. b
# b (t) is the two-level form

factor obtained by Fourier transforming the two-point cluster function Y
# b ( x ) [55]. If

a fraction b of the levels obey Guassian orthogonal ensemble (irregular) statistics and

1 –b obey Poisson (regular) statistics, then b
# b (t) is given by

b
# b (t) = b b

# 0 t

b 1 1
(1 –b )

M
d (t). (19)

The asterisk in equation (18) implies a convolution and D
N

= N - " {[sin ( p Nt)] } p t}# .

The preceding two equations imply that the d function governs the short-time

behaviour of © © P(t) ª ª and the subsequent long-time behaviour resulting in the dip

below the asymptotic limit is governed by b
#
(t). The broken curve shown in ® gure 7 is

obtained for a value of b = 0.6 implying that about 60% of the quasibound states of

collinear HeH+

#
contribute to its irregular dynamical behaviour. We have also

calculated © © P(t) ª ª for collinear HeHD+ and HeDH+ and found about 90 % of the

quasibound states of the former and about 20% of the latter to contribute to their

irregular dynamical behaviour [56]. © © P(t) ª ª calculated from the bound state spectrum

of collinear N
#
H+ revealed about 75 % irregularity in its dynamics [42]. A similar

analysis of the bound states and resonances for HO
#

[57] revealed about 90%

irregularity in this system, in accord with other classical and quantal measures of

irregularity.

5. Photoexcitation processes

5.1. Model diatoms: single excited state

In order to illustrate the basic methodology in computing photoabsorption±

dissociationcross-sections and resonance Raman scattering intensitieswe have carried

out dynamical calculations on four diŒerent model diatomic molecular systems

undergoing photoexcitation and subsequent emission.
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We have considered a harmonic ground-electronic-stat e potential energy curve

V g
HO

= "
#
k

g
(r –r

e
) # (20)

and four diŒerent excited-state potential energy curves: dissociative (indicated by the

subscript DIS), harmonic (indicated by the subscript HO), Morse oscillator (indicated

by the subscript MO) and symmetric double well (indicated by the subscript SDW) in

nature. The corresponding functional forms are :

V e
DIS = a exp [ –b(r –r

"
)] 1 c

"
, (21)

V e
HO = "

#
ke(r –r

#
) # 1 c

#
, (22)

V e
MO = De{1 –exp [ –a (r –r

$
)]}# 1 c

$
, (23)

V e
SDW = "

#
k

"
(r –r

%
) # 1 "

#
k

#
(r –r

%
) % 1 v b exp [ –d(r –r

%
) # ] 1 c

%
. (24)

The parameters de® ning the harmonic ground state and the four excited states

corresponding to the four diŒerent model systems are listed in table 1. The potential

energy curves for the diŒerent model systems are shown in ® gure 8.

We have performed the WP dynamical calculations by combining a second-order

diŒerencing (SOD) scheme for temporal evolutionand a fast Fourier transform (FFT)

algorithm for spatial evolution on a one-dimensional grid in r. At t = 0 the WP v (0)

represents the ground-vibrational -state wavefunction on the ground electronic state

and a Franck± Condon (FC) transition takes it to the excited electronic state:

r u (0) ª = l r v
!
ª . (25)

The transition dipole moment l has been taken to be coordinate independent (the

Condon approximation) and is equated to unity in the present study. The propagation

of the `promoted-state wavefunction’ , u (0), is carried out on the excited state under

the action of the excited state Hamiltonian Hex [6] :

u (t 1 D t) = u (t –D t) –2iHex D t

ò
u (t), (26)

where D t is the time step used in time evolution. The overlap of the initial `promoted

state ’ u (t = 0) with its time-evolved form u (t) is computed to obtain the auto-

correlation function C
! !

(t) at every time step of propagation. The absorption cross-

section [4, 19] is computed using equation (10).

Evaluation of the overlap of the time-evolved promoted state u (t) at each time step

with another promoted state u
"
(= l v

"
) corresponding to the v = 1 eigenfunction v

"
of

the ground electronic state yields the cross-correlation function C
" !

(t), the half-

Fourier transform of which yields the Raman amplitude (equation (12)) and the

Raman intensity (equation (13)).

The nature of the excited state is re¯ ected in the autocorrelation (cross-correlation)

function and naturally in the absorption spectrum (Raman excitation pro® le).

It is worth pointing out that the basic ideas used in this section are similar to those

utilized in sections 2 and 3 on bound and quasibound states. The main diŒerence is

that we dealt with pseudospectra in earlier sections while we deal with `real ’ spectra in

the present section.

5.1.1. Harmonic excited state

The WP propagation on the excited state was carried out on a spatial grid (r
min

, dr,

N
r
) = (3.5a

!
, 0.05a

!
, 128) for a total of 352.91 fs using D t = 0.01077 fs. The promoted-

state wavefunction revisits the FC region periodically because of the bound nature of
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Table 1. Parameters for the model potential energy curves.

k
g
, r

e
3.0 eV a- #

!
, 6.0a

!
a, b, r

"
, c

"
3.0 eV, 0.3a- "

!
, 3.5a

!
, 4.62 eV

k
e
, r

#
, c

#
3.0 eV a- #

!
, 6.5a

!
, 2.7 eV

D
e
, r

$
, a , c

$
2.5 eV, 6.3a

!
, 0.7a- "

!
, 2.9 eV

k
"
, k

#
, v

b
, d, r

%
, c

%
3.0 eV a- #

!
, 0.2 eV a- %

!
, 0.5 eV, 10.0a- #

!
, 6.8a

!
, 1.998 eV

Figure 8. The potential energy (PE) curves for (a) harmonic-to-harmonic, (b) harmonic-to-
Morse, (c) harmonic-to-symmetric double-well and (d ) harmonic-to-dissociative
excitations.

the excited state. The autocorrelation function is a periodically oscillating function of

time and the height of the peaks in C
! !

(t) remains the same throughout the time span

as can be seen in ® gure 9(a). The absorption cross-section (® gure 9(b)) shows

structures which are correlated to the vibrational levels of the excited state. The cross-

correlation function C
" !

(t) also shows (® gure 9(c)) periodicity and, within each crest,

dips are indicative of the nodal pattern of the ® nal-state wavefunction. The height of

the crests in C
" !

(t) also remains the same at all times as we have not introduced the

phenomenological damping factor C . The Raman excitation pro® le (REP) also shows

structures corresponding to the vibrational levels of the excited state.
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248 S. Mahapatra et al.

Figure 9. (a) The autocorrelation function, (b) the absorption (ABS) cross-section, (c) the
cross-correlation function and (d) the REP for harmonic-to-harmonic excitation.

5.1.2. Morse excited state

The WP propagation on the Morse excited state was carried out on a spatial grid

(rmin , dr, Nr) = (4.5a
!
, 0.05a

!
, 128) for a total of 352.91 fs using D t = 0.01077 fs. The

region close to the zero-point energy level of the Morse potential is close to that of

the harmonic potential but the anharmonicity increases with increase in energy. The

autocorrelation and cross-correlation functions (shown in ® gures 10 (a) and (c)) are

less symmetric in harmonic-to-Morse type of excitation than in harmonic-to-harmoni c

transitions. Since in the Morse potential the wall supporting the inner turning point is

more repulsive than the wall supporting the outer turning point, the probability of

locating the particle around the outer turning point is higher and, hence, the lobe of

the wavefunction closer to the outer turning point is more intense. This is re¯ ected in

the structure of the cross-correlation function. Anharmonicity makes the excited-state

WP more diŒuse and the peaks appearing in C
! !

(t) and C
" !

(t) decrease in height and

become wider. The results of r A and REP for this system are reproduced in ® gures

10 (b) and (d ) respectively.

5.1.3. Symmetric double-well excited state

The WP propagation on the double-well excited state was carried out on a spatial

grid (r
min

, dr, N
r
) = (4.0a

!
, 0.02a

!
, 256) for a total of 352.91 fs using D t = 0.01077 fs.

Both C
! !

(t) and C
" !

(t) are strongly dependent on the height of the double-well barrier.
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Figure 10. Same as in ® gure 9 for harmonic-to-Morse excitation.

Some fraction of the WP in one well either crosses over or leaks through the barrier

and goes to the other side. Consequently, C
! !

(t) plotted in ® gure 11(a) shows a

complex pattern despite the apparent periodicity. C
" !

(t) also becomes quite com-

plicated with increase in time as shown in ® gure 11(c). Both the absorption cross-

section and the REP exhibit structures corresponding to the bound states of the

double-well potential (see ® gures 11 (b) and (d )).

5.1.4. Repulsi v e excited state

The WP propagation on the excited state was carried out on a spatial grid (r
min

, dr,

N
r
) = (3.5a

!
, 0.05a

!
, 256) for a total of 88.15 fs using D t = 0.00538 fs. Because of the

nature of the excited state, the WP moves away from the FC region and it never

returns! As a result, C
! !

(t) is a monotonically decreasing function and C
" !

(t) has one

envelope corresponding to the overlap of the promoted-state wavefunction with the

® nal-state wavefunction, during its passage away from the FC region, towards the

asymptote as shown in ® gures 12 (a) and (c). The absorption cross-section does not

show any structure and the REP (referred to as the continuum Raman in this case) is

also structureless as illustrated in ® gures 12 (b) and (d ) respectively.

REPs are usually computed by including a phenomenological damping factor in

the form of exp ( –C t } ò ), multiplying the cross-correlation function (prior to the

Fourier transform). The lifetime s of the excited state, in that case, would correspond

to ò } C . The model calculations mentioned above have assumed an `in® nite’ lifetime
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Figure 11. Same as in ® gure 9 for harmonic-to-symmetric double-well excitation.

( C = 0) for the bound excited states. In the case of the dissociative excited states, there

is a `natural ’ lifetime decided by the slope of the decaying potential.Raman emission is

invariably taken to be `instantaneous ’ . Therefore, any emission after a few

femtoseconds would have to be considered as ¯ uorescence.

For the case of harmonic-to-harmoni c photoexcitation, for example, we have

examined the in¯ uence of the excited-state lifetime on the REP by varying s from 1 fs

to 1 ps. The resulting REPs together with the corresponding C
" !

(t)s are plotted in

® gure 13. It is clear that, when the excited state is short lived ( s E 1 fs), the REP shows

a single broad hump. With increase in s to 10 fs, the REP becomes narrower and is also

more intense. With further increase in s (100 fs), additional structures develop. For

s = 1.0 ps the REP is highly structured, revealing the individual vibrational states

(accessible) in the excited electronic state.

With increase in s the REPs become increasingly intense. For s = 0, there is no

resonance Raman, the Raman scattering is weak and the REP is independent of

excitation wavelength. For an excited state that lives `for ever ’ , the REP is highly

structured and intense.

We have considered only the Condon approximation ( l = constant) in the above

discussion. It can be expected that l can vary with r. For a l (r) that varies linearly with

r in the vicinity of r
e
(the equilibrium bond distance in the ground state), we can expect

some noticeable changes in C
" !

(t) and hence in the REP.

Much of the theoretical analysis of resonance Raman excitation observed in the

laboratory focuses attention on the REP for individual (Raman-active) vibrational
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Figure 12. Same as in ® gure 9 for harmonic-to-dissociative excitation.

modes and it concerns only the relative shift ( D = (r !
e

–r
e
) } r

e
) in the equilibrium

position in going from the ground to the excited state. For example, see [58, 59].

5.2. Multiple excited states and wa v e packet interference eŒects

For several systems, there is more than one excited electronic state and often they

are coupled to each other, in addition to being coupled to the ground electronic state.

They are expected to lead to interference between portions of the wavefunction

evolving on the diŒerent electronic states and result in resonance de-enhancement [60].

Therefore, we have undertaken a model study to investigate the eŒect of relative

location of the curve-crossing with respect to the FC excitation region on the outcome

of the dynamical process, that is the population variation with time on the coupled

states, autocorrelation and cross-correlation functions, absorption spectrum, REP

and relative quantum yields between channels [61].

The Born± Oppenheimer approximation is expected to break down when more than

one electronic state approach each other within a vibrational quantum of energy. In

dealingwith such a situation,one usually resorts to a diabatic electronic representation.

In this case the states are coupled through the electronic part of the Hamiltonian

matrix rather than the nuclear kinetic energy part as in the adiabatic electronic
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Figure 13. The eŒect of the excited-state lifetime on the Raman correlation function and the
REPs ; the excited-state lifetimes s are indicated.

representation. In the latter case the non-diabatic couplingelements exhibit singularity

at the point of degeneracy [62]. Also, the transition dipole matrix elements are quickly

varying functions of the nuclear coordinates in the adiabatic representation and the

generalized Condon approximation is no longer valid [63].

We have considered three diabatic electronic states for a diatomic molecule. The
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Table 2. Parameters for the ground-state and the excited-state potential energy curves, non-
adiabatic coupling and for time evolution on the grid.

D
e
, a , r

e
2.0 eV, 1.0a- "

!
, 1.4a

!
a

"
, a

#
, b

"
, b

#
1.6 eV, 1.8 eV, 0.4a- "

!
, 0.5a- "

!
h

x
, b

x
0.03 eV, 5.0a- #

!
V

shift
0.5 eV

r
min

, dr, N
r

0.1a
!
, 0.04a

!
, 512

dt, N
t

0.005 38 fs, 32768

ground state is taken to be a bound state with the potential V
!

represented by a Morse

curve
V

!
(r) = D

e
{exp [ –2 a (r –r

e
)] –2exp [ –a (r –r

e
)]}. (27)

Two close-lying excited states (both dissociative) are denoted as V
"

and V
#
respectively:

V
"
(r) = a

"
exp [ –b

"
(r –r

"
)] 1 V

shift
, (28)

V
#
(r) = a

"
exp [ –b

#
(r –r

#
)], (29)

where Vshift refers to a constant energy term added to V
"
. We use a Gaussian non-

adiabatic coupling function V
" #

between the two excited states :

V
" #

(r) = hx exp [ –b x (r –rx ) # ]. (30)

The ground state is coupled to the excited states only through radiation (electric

dipole interaction). In equation (30) the parameters h
x

and b
x

de® ne the shape of the

Gaussian coupling element and r
x

locates the crossing point. We keep the height and

width of the coupling function constant in this study as their variation will change the

amount of wavefunction transfer between the coupled states and also the time span of

the interference eŒect [64, 65]. For simplicity, the radiation dipole interaction element

l [ E is taken as unity. This means that we impose no particular temporal or spatial

shape on the radiation ® eld. We have considered three diŒerent points of crossing

between the excited states, relative to the FC excitation region. The parameters for the

relevant potential energy curves are listed in table 2.

To start with, we consider excitation from the ground vibrational state ( v = 0) of

the ground electronic state. The initial condition of the promoted-stat e wavefunction

is represented as
r u l (0) ª = l l r v

!
ª , l = 1, 2, (31)

where v
!

represents the wavefunction of the ground vibronic state, l is the transition

dipolemoment and l is the channel index denoting the diŒerent excited states. The time

evolution of the excited-state wavefunction is governed by the coupled diŒerential

equation [32]:

iò
¥
¥ t 0 u "

u # 1 = 0 H " "

V
# "

V
" #

H
# #

1 0 u "

u
#

1 . (32)

The symbols H
ij

and V
ij

have their usual meanings. The Laplacian of the wavefunction

is evaluated using the FFT algorithm and the time evolution is followed using the SOD

scheme [6] :

u l (t 1 D t) = u l (t –D t) –
2iH D t

ò
u l (t). (33)

The autocorrelation function C l

! !
(t) = © u l(0) r u l(t) ª for each excited state l is

evaluated at each time step and the total (C
! !

(t) = R #
l = "

C l

! !
(t)) is plotted in ® gure 14(c).
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Figure 14. (a) The potential energy (PE) curves for the ground state (0) and the two excited
states (1 and 2) which cross before the FC point (r

x
! r

e
) ((± ± ± ), non-adiabatic coupling);

(b) the population variation with time; (c) the autocorrelation function (Ð Ð ) and cross-
correlation function for the fundamental Raman transition (± ± ± ), (d ) the partial and
total absorption cross-sections; (e) the individual and total REPs for the two excited
states (1 and 2) ; ( f ) the relative quantum yield for channel 2.

The Fourier transform of C l

! !
(t) yields the partial photoabsorption± dissociation cross-

section r l for channel l :

r
l
(x ) =

2 p x

3 ò c &
¢

- ¢

exp [i(x 1 x
!
)t] © u l (0) r u l (t) ª dt. (34)

The relative quantum yield for channel l is de® ned as r
l
} R

l
r

l
.

The Raman amplitude a l

" !
( x ) for the fundamental vibrational excitation via each

electronic channel is obtained from the cross-correlation function C l

" !
(t) = © u

"
r u l(t) ª ,

where u
"

is the promoted state corresponding to the wavefunction v
"

for the ® rst

excited vibrational state ( v = 1) of the ground electronic state [20]:

a l

" !
( x ) =

i

ò &
¢

!

C l

" !
(t) exp [i(x 1 x

!
)t] dt. (35)
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Figure 15. Same as in ® gure 14 for r
x

= r
e
.

The Raman intensity or the Raman excitation pro® le for each channel is obtained

from the corresponding Raman amplitude:

I l

" !
( x ) = x x $

s
r a l

" !
( x ) r # . (36)

In reality, the observable is the overall Raman excitation pro® le:

I
" !

( x ) = x x $
s
r a

" !
( x ) r # , (37)

where a
" !

( x ) = R
l
a l

" !
( x ). It is clear from the above that there will be constructive and

destructive interference between the Raman amplitudes (complex energy domain

quantities) for the diŒerent channels and the observed REP for the fundamental (as

well as the overtone) excitation would reveal enhancement and de-enhancement

eŒects.

5.2.1. Case A (rx
! re)

The parameters speci® c to the potential energy curves considered in case A are

(r
"
, r

#
, rx ) = (1.8, 1.8, 0.963)a

!
respectively. The resulting potential energy curves are

shown in ® gure 14(a). The FC transition point is located after the crossing point and

the promoted-stat e wavefunctions come across only the tail of the coupling
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Figure 16. Same as in ® gure 14 for r
x
" r

e
.

(represented by a Gaussian) region during time evolution.Therefore, there is a transfer

of a fraction of the wavefunction from excited state 2 to excited state 1 within the ® rst

5 fs of time evolution, after which the two excited states act as two uncoupled

pathways. This is evident from the plots of population as a function of time for each

channel in ® gure 14(b). Although the excitation (vertical energy gap) energies are

diŒerent for the two excited states, their diŒerences fall within the absorption bands of

the two states concerned and the interference eŒect becomes discernible in the

absorption cross-section and REP shown in ® gures 14 (d) and (e) respectively. The

relative quantum yield for channel 2, shown in ® gure 14( f ), is understandably strongly

dependent on energy.

5.2.2. Case B (rx = re )

The parameters speci® c to the potential energy curves of case B are (r
"
, r

#
, rx ) =

(1.8, 1.95, 1.38)a
!
. Here we consider the case when the FC transition point coincides

with the crossing point, as shown in ® gure 15 (a). The exchange of wavefunctions

between the two states starts from the time of excitation and goes on up to 25 fs (see

® gure 15(b)). The very location of the FC point on the curve-crossing region makes the
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Figure 17. (a) The potential energy (PE) curves for a model pre-dissociative system for which
the excited state 1 is optically bright; (b) the autocorrelation function (starts from unity);
(c) the cross-correlation function (peaks initially at 0.6) ; (d) the absorption spectrum;
(e) the Raman intensity.

dynamics highly sensitive to it. The energy ranges for excitation to the two excited

states match very well. Hence the absorption cross-sections and the REPs for

individual states reinforce each other and no additional hump is observed in the total

intensity, as shown in ® gures 15 (d ) and (e). The relative quantum yield for channel 2

varies only moderately over the energy range shown in ® gure 15( f ).

5.2.3. Case C (rx
" re)

The parameters speci® c to the potential energy curves of case C are (r
"
, r

#
, rx ) =

(1.8, 2.4, 2.51)a
!
. The location of the curve crossing after the FC point (® gure 16 (a))

makes the crossing completely accessible and allows the two promoted-state

wavefunctions (evolving on the two excited states) to transfer amplitudes (® gure

16(b)) up to 35 fs. The velocity of the WP during cross-over, the gradient of the

potentialenergy curves aroundthecrossing pointand the mass of the evolvingmolecule

or the molecular fragments are the factors dictating the extent of transfer of the ampli-

tudes between the coupled states. The strength (height and width) of the coupling

function is also an important factor. A dip in the total absorption spectrum and

Raman intensity appears as shown in ® gures 16 (d ) and (e) since the vertical excitation

energies for the two states are signi® cantly diŒerent. The relative quantum yield

for channel 2 re¯ ects the coupling between the two channels, as illustrated in

® gure 16 ( f ).
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Figure 18. Potential energy curves for HI [66]. Excited states 1, 2, 3 and 4 correspond to $ P
"
,

" P
"
, $ R

"
and $ P

!
respectively.

Figure 19. (a) The cumulative autocorrelation function, (b) the total absorption (ABS) cross-
section,(c) the cumulative cross-correlation function and (d ) the total continuum Raman
excitation pro® le for the fundamental Stokes transition for HI [68].

5.2.4. Further model study

The three diŒerent model cases discussed so far consider two optically bright

repulsive excited states and their role in determining the outcome of the photo-

dynamical event as a function of the location of the curve-crossing point. Now we

report one more model study in which there are two excited states coupled to each

other and only one of them is optically bright. One of them (the optically bright state)

is bound in nature and the other is repulsive. That is, this is a model pre-dissociative

case and the coupling region is characterized by a Gaussian coupling element centred

at the crossing point. Figure 17(a) shows the model pre-dissociative system and the

correlation functions are shown in ® gures 17 (b) and (c), whereas the absorption

cross-section and REP are shown in ® gures 17 (d ) and (e) respectively. The additional

structures in ® gures 17 (d ) and (e) are due to the coupling between the excited states

and the envelopes in both the spectra are determined by the early part of the
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autocorrelation and cross-correlation functions. The structures that appear in the

time correlation functions after 500 fs become re¯ ected in the absorption cross-section

and Raman intensity patterns in the form of ® ne structures.

Considering HI as a realistic example, we have computed the photodissociation

cross-section by computing the autocorrelation function [32]. In its ® rst absorption

band, HI supports four repulsive excited states and three of them are non-adiabatically

coupled to each other, as shown in ® gure 18 [66]. Two of them lead to the H 1 I channel

and two to H 1 I*. By choosing the initial vibrational state of HI, we showed that the

dissociation channel could be controlled. In ® gure 19 are plotted the cumulative

autocorrelation and cross-correlation functions and also the absorption cross-section

and continuum Raman pro® le for HI [67]. The special point to be noted here is the

quantum interference eŒect in the total Raman intensity, which shows a `dip ’ in the

pro® le. This is termed resonance de-enhancement. Elsewhere [68] we have pointed out

using the time cross-correlation function approach that DI would show a more

pronounced de-enhancement eŒect. We have used the same approach to ascertain the

role of diŒerent excited states in deciding the photoexcitation dynamics of IBr [69].

5.3. Recov ery of the cross-correlation function

As the Raman amplitude a
fi
( x ) is a complex quantity, it has an amplitude and

phase information associated with it, and only the modulus of the Raman amplitude

survives when the REP is computed. The phase information is lost. Reconstruction of

the Raman amplitude from the REP, with recovery of the correct phase information,

is an interesting problem, as a subsequent Fourier transformation of it would yield the

cross-correlation function. In the molecular dynamics literature there have been only

two known methods for direct phase recovery until recently, and each had its own

limitations. One was the dispersion method due to Albrecht and co-workers [70, 71]

and the other was the method of maximum entropy due to Levine and co-workers

[72± 76]. The former demands analyticity of ln [a
fi
(z)] in the right-half complex plane

but the latter requires analyticity of 1 } a
f , i

(z) in the same domain, where the Raman

amplitude has been extended to the complex plane z = c –i ò x , for c " 0. Recently,

Lee [77] has proposed a new method for phase recovery from the REP and

reconstruction of Raman amplitude. In this method, the Raman amplitude, when

extended in the complex plane, may have zeros in the right-half complex plane, while

both the dispersion method and the maximum-entropy method demand that the

Raman amplitude, when extended in the complex plane, should not have any zeros.

Maximum-entropy formalism has been used to generate the time cross-correlation

function from the observed REP of iodobenzene excited to the B continuum and

comparison with the directly computed time cross-correlation function has been made

by Remacle et al. [74].

An alternative time-frame approach, canonically conjugate to the energy-frame

approach, also exists for calculating the REP directly from the absorption cross-

section [78]. Lee and Yeo [78] applied the same to real systems, namely carotene and

the hexamethylbenzene ± tetracyanoethylene complex to obtain the ® rst-order REP

from the experimental absorption cross-section values.

6. Summary and conclusion

With the advent of high-speed computers with adequate memory, numerical

solution of the time-dependent Schro$ dinger equation has become quite a practical

approach in the last decade or so, particularly for systems with a few degrees of
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freedom. Therefore, time correlation functions are increasingly being used to compute

dynamical observables and to obtain insight into the dynamics. In this review, we have

outlined the basic methodology involved and illustrated their use in determining the

bound states of diatomic and triatomic species, in investigating the quasibound

states and transition-stat e resonances in reactive systems and in computing

photoabsorption± dissociation cross-sections and REPs, using examples from our own

laboratory. Since the TDQM approach allows one to treat the diŒerent electronic

states on equal footing, we have been able to examine the role of excited

electronic states and wavefunction interference eŒects in in¯ uencing the photo-

excitation observables, using model systems.

By necessity, such an approach is limited to systems with a small number of degrees

of freedom but they are extremely valuable in obtaining insight into the dynamics and

in evaluating the reliability of other approximate methods that are used for larger

systems.
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